PHYSICS 428-1 QUANTUM FIELD THEORY I

Ian Low, Fall 2008

Course Webpage: http://www.hep.anl.gov/ian/teaching/QFT/QFT_Fall08.html

ASSIGNMENT #6

Due at 3:30 PM, November 7th

(Two pages and four problems.)

Reading Assignments:

Sections 3.6 of Peskin and Schroeder.

Problem 1

Do Problem 3.2 in Peskin and Schroeder.

Problem 2

We are going to consider the Lorentz transformation property of the Dirac bilinear $\Psi^{\mu\nu} = \bar{\psi}\sigma^{\mu\nu}\psi$. Because $\Psi^{\mu\nu}$ is anti-symmetric, there are six independent components in it. On the other hand, an irreducible representation (j_1, j_2) of SO(1,3) has $(2j_1 + 1) \times (2j_2 + 1)$ independent components. (This is called the dimension of the representation.)

- (a) Write down all the irreducible representations of SO(1,3) that are six-dimensional. Show that $\Psi^{\mu\nu}$ can be none of them. (Hint: What is the parity of $\Psi^{\mu\nu}$?)
- (b) Next we need to consider reducible representations of the form $(j_1, j_2) \oplus (j'_1, j'_2)$. By counting the dimensionality show that there is a unique reducible representation in which $\Psi^{\mu\nu}$ could possibly fit.
- (c) Recall in classical electromagnetism we define the dual of the field strength as $\tilde{F}_{\mu\nu} = (1/2)\epsilon^{\mu\nu\delta\rho}F_{\delta\rho}$. Let's define

$$\Psi_{+}^{\mu\nu} = \Psi^{\mu\nu} \pm i\tilde{\Psi}^{\mu\nu}.$$

Then we can decompose $\Psi^{\mu\nu}=\Psi^{\mu\nu}_++\Psi^{\mu\nu}_-$. Show that $\Psi^{\mu\nu}_\pm$ are self-dual tensors which satisfy

$$\tilde{\Psi}_{\pm}^{\mu\nu} = \mp i \tilde{\Psi}_{\pm}^{\mu\nu}.$$

Again use the dimensionality counting to show that $\Psi^{\mu\nu}\pm$ would each fits into a unique irreducible representation of the Lorentz group.

(d) Now prove your answers in (b) and (c) by explicitly working out the transformation property of $\Psi^{\mu\nu}$ under the Lorentz group. (Hint: as always, to see how an object O transforms under the Lorentz group, you compute the commutator of O with the generators of SO(1,3).)

Problem 3

- (a) Show that the Dirac Lagrangian is invariant under space-time translations: $x^{\mu} \to x^{\mu} + a^{\mu}$.
- (b) Derive the energy-momentum tensor of the Dirac field the Noether current corresponding to translations.
- (c) Construct the expression for the conserved physical momentum **P** in the quantum theory (that is, express it in terms of raising and lowering operators, $b_{\mathbf{p}}^{s}$, $c_{\mathbf{p}}^{s}$, etc.). Make sure you

discard infinite irrelevant additive constants and argue why you are doing it.

(d) Consider a one particle state,

$$|\mathbf{p}, s\rangle = \sqrt{2E_{\mathbf{p}}} \, b_{\mathbf{p}}^{s\dagger} |0\rangle,$$

and show that this is indeed a state of definite momentum.

Problem 4

(a) Derive Eqs. (3.114) and (3.115) in Peskin and Schroeder. Use them to show that $\psi_a(x)$ and $\bar{\psi}_b(y)$ anti-commute at space-like separations. That is, show that $\{\psi_a(x), \bar{\psi}_b(y)\} = 0$ for $(x-y)^2 < 0$.

(b) Consider two operators, $\mathcal{O}_1(x) = \bar{\psi}_a(x)A_{ab}\psi_b(x)$ and $\mathcal{O}_2(x) = \bar{\psi}_a(x)B_{ab}\psi_b(x)$, where A and B are some matrices. (All operators corresponding to physically observable quantities of a fermion field have this generic form – consider for example the energy-momentum tensor and the Noether current encountered earlier in this homework.) Prove that \mathcal{O}_1 and \mathcal{O}_2 commute at space-like separations:

$$[\mathcal{O}_1(x), \mathcal{O}_2(y)] = 0$$
 at $(x - y)^2 < 0$,

as required by causality.